Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
2.
Chin Med J Pulm Crit Care Med ; 2(1): 10-16, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567372

RESUMO

Cellular senescence is a status of irreversible growth arrest, which can be triggered by the p53/p21cip1 and p16INK4/Rb pathways via intrinsic and external factors. Senescent cells are typically enlarged and flattened, and characterized by numerous molecular features. The latter consists of increased surfaceome, increased residual lysosomal activity at pH 6.0 (manifested by increased activity of senescence-associated beta-galactosidase [SA-ß-gal]), senescence-associated mitochondrial dysfunction, cytoplasmic chromatin fragment, nuclear lamin b1 exclusion, telomere-associated foci, and the senescence-associated secretory phenotype. These features vary depending on the stressor leading to senescence and the type of senescence. Cellular senescence plays pivotal roles in organismal aging and in the pathogenesis of aging-related diseases. Interestingly, senescence can also both promote and inhibit wound healing processes. We recently report that senescence as a programmed process contributes to normal lung development. Lung senescence is also observed in Down Syndrome, as well as in premature infants with bronchopulmonary dysplasia and in a hyperoxia-induced rodent model of this disease. Furthermore, this senescence results in neonatal lung injury. In this review, we briefly discuss the molecular features of senescence. We then focus on the emerging role of senescence in normal lung development and in the pathogenesis of bronchopulmonary dysplasia as well as putative signaling pathways driving senescence. Finally, we discuss potential therapeutic approaches targeting senescent cells to prevent perinatal lung diseases.

3.
Dev Cell ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38569553

RESUMO

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.

4.
Exp Biol Med (Maywood) ; 249: 10040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577707

RESUMO

Regulatory T cells (Tregs) constitute a specialized subset of T cells with dual immunoregulatory and modulatory functions. Recent studies have reported that Tregs mediate immune responses and regulate the development and repair processes in non-lymphoid tissues, including bone and cardiac muscle. Additionally, Tregs facilitate the repair and regeneration of damaged lung tissues. However, limited studies have examined the role of Tregs in pulmonary development. This study aimed to evaluate the role of Tregs in pulmonary development by investigating the dynamic alterations in Tregs and their hallmark cellular factor Forkhead box P3 (Foxp3) at various stages of murine lung development and establishing a murine model of anti-CD25 antibody-induced Treg depletion. During the early stages of murine lung development, especially the canalicular and saccular stages, the levels of Treg abundance and expression of Foxp3 and transforming growth factor-ß (TGF-ß) were upregulated. This coincided with the proliferation period of alveolar epithelial cells and vascular endothelial cells, indicating an adaptation to the dynamic lung developmental processes. Furthermore, the depletion of Tregs disrupted lung tissue morphology and downregulated lung development-related factors, such as surfactant protein C (SFTPC), vascular endothelial growth factor A (VEGFA) and platelet endothelial cell adhesion molecule-1 (PECAM1/CD31). These findings suggest that Tregs promote murine lung development.


Assuntos
Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Fatores de Transcrição Forkhead/metabolismo
5.
J Pediatr Surg ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38519389

RESUMO

BACKGROUND: The severity of pulmonary hypoplasia is a main determinant of outcome for babies with congenital diaphragmatic hernia (CDH). Antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs) has been shown to rescue morphological features of lung development in the rat nitrofen model of CDH. Herein, we evaluated whether AFSC-EV administration to fetal rats with CDH is associated with neonatal improvement in lung function. METHODS: AFSC-EVs were isolated by ultracentrifugation and characterized by size, morphology, and canonical marker expression. At embryonic (E) day 9.5, dams were gavaged with olive oil (control) or nitrofen to induce CDH. At E18.5, fetuses received an intra-amniotic injection of either saline or AFSC-EVs. At E21.5, rats were delivered and subjected to a tracheostomy for mechanical ventilation (flexiVent system). Groups were compared for lung compliance, resistance, Newtonian resistance, tissue damping and elastance. Lungs were evaluated for branching morphogenesis and collagen quantification. RESULTS: Compared to healthy control, saline-treated pups with CDH had fewer airspaces, more collagen deposition, and functionally exhibited reduced compliance and increased airway resistance, elastance, and tissue damping. Conversely, AFSC-EV administration resulted in improvement of lung mechanics (compliance, resistance, tissue damping, elastance) as well as lung branching morphogenesis and collagen deposition. CONCLUSIONS: Our studies show that the rat nitrofen model reproduces lung function impairment similar to that of human babies with CDH. Antenatal administration of AFSC-EVs improves lung morphology and function in neonatal rats with CDH. LEVEL OF EVIDENCE: N/A (animal and laboratory study).

6.
Genes (Basel) ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540357

RESUMO

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Assuntos
Perfilação da Expressão Gênica , Pulmão , Humanos , Camundongos , Animais , Pulmão/metabolismo , Transcriptoma/genética , Fenótipo , Pericitos , Mamíferos/genética
7.
Pediatr Surg Int ; 40(1): 81, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498203

RESUMO

PURPOSE: Impaired fetal lung vasculature determines the degree of pulmonary hypertension in the congenital diaphragmatic hernia (CDH). This study aims to demonstrate the morphometric measurements that differ in pulmonary vessels of fetuses with CDH. METHODS: Nitrofen-induced CDH Sprague-Dawley rat fetuses were scanned with microcomputed tomography. The analysis of the pulmonary vascular tree was performed with artificial intelligence. RESULTS: The number of segments in CDH was significantly lower than that in the control group on the left (U = 2.5, p = 0.004) and right (U = 0, p = 0.001) sides for order 1(O1), whereas there was a significant difference only on the right side for O2 and O3. The pooled element numbers in the control group obeyed Horton's law (R2 = 0.996 left and R2 = 0.811 right lungs), while the CDH group broke it. Connectivity matrices showed that the average number of elements of O1 springing from elements of O1 on the left side and the number of elements of O1 springing from elements of O3 on the right side were significantly lower in CDH samples. CONCLUSION: According to these findings, CDH not only reduced the amount of small order elements, but also destroyed the fractal structure of the pulmonary arterial trees.


Assuntos
Hérnias Diafragmáticas Congênitas , Ratos , Animais , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Hérnias Diafragmáticas Congênitas/induzido quimicamente , Ratos Sprague-Dawley , Inteligência Artificial , Microtomografia por Raio-X , Pulmão/diagnóstico por imagem , Éteres Fenílicos , Modelos Animais de Doenças
8.
Artigo em Inglês | MEDLINE | ID: mdl-38442187

RESUMO

Post-natal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human post-natal lung development are yet to be fully understood. In this study we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and non-endothelial mesenchymal cells, along with lung leukocytes) from one-day-old to eight-year-old organ donors with no known lung disease. For analysis, we considered the donors in 4 age groups [less than 30 days old neonates, 30 days to < 1 year old infants, toddlers (1 to < 2 years) and children 2 years and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared to number of DEG found during infant to toddler- or toddler to older children- transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.

9.
Redox Biol ; 72: 103115, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38554522

RESUMO

BACKGROUND: Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS: Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS: An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION: The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.

10.
BMC Pulm Med ; 24(1): 75, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331745

RESUMO

BACKGROUND: Collagen type IV alpha 1 chain (COL4A1) in the basement membrane is an important component during lung development, as suggested from animal models where COL4A1 has been shown to regulate alveolarization and angiogenesis. Less is known about its role in human lung development. Our aim was to study COL4A1 expression in preterm infants with different lung maturational and clinical features. METHODS: COL4A1 expression in 115 lung samples from newborn infants (21-41 weeks' gestational age; 0-228 days' postnatal age [PNA]) was studied by immunohistochemistry combined with digital image analysis. Cluster analysis was performed to find subgroups according to immunohistologic and clinical data. RESULTS: Patients were automatically categorized into 4 Groups depending on their COL4A1 expression. Expression of COL4A1 was mainly extracellular in Group 1, low in Group 2, intracellular in Group 3, and both extra- and intracellular in Group 4. Intracellular/extracellular ratio of COL4A1 expression related to PNA showed a distinctive postnatal maturational pattern on days 1-7, where intracellular expression of COL4A1 was overrepresented in extremely preterm infants. CONCLUSIONS: COL4A1 expression seems to be highly dynamic during the postnatal life due to a possible rapid remodeling of the basement membrane. Intracellular accumulation of COL4A1 in the lungs of extremely premature infants occurs more frequently between 1 and 7 postnatal days than during the first 24 hours. In view of the lung arrest described in extremely preterm infants, the pathological and/or developmental role of postnatally increased intracellular COL4A1 as marker for basement membrane turnover, needs to be further investigated.


Assuntos
Colágeno Tipo IV , Recém-Nascido Prematuro , Recém-Nascido , Animais , Humanos , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Mutação , Membrana Basal/metabolismo , Pulmão/metabolismo
11.
J Perinat Med ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38407216

RESUMO

OBJECTIVES: To determine if infants with exomphalos had abnormal antenatal lung growth as indicated by lower chest radiographic thoracic areas (CRTA) on day one compared to controls and whether the CRTA could predict the development of bronchopulmonary dysplasia (BPD). METHODS: Infants with exomphalos cared for between January 2004 and January 2023 were included. The controls were term, newborn infants ventilated for absent respiratory drive at birth, without lung disease and had no supplemental oxygen requirement by 6 h of age. The radiographs were imported as digital image files by Sectra PACS software (Sectra AB, Linköping, Sweden). Free-hand tracing of the perimeter of the thoracic area was undertaken and the CRTA calculated by the software. RESULTS: Sixty-four infants with exomphalos and 130 controls were included. Infants with exomphalos had a lower median (IQR) CRTA (1,983 [1,657-2,471] mm2) compared to controls (2,547 [2,153-2,932] mm2, p<0.001). Following multivariable regression analysis, infants with exomphalos had lower CRTAs compared to controls (p=0.001) after adjusting for differences in gestational age and male sex. In the exomphalos group, the CRTAs were lower in those who developed BPD (n=14, 1,530 [1,307-1,941] mm2) compared to those who did not (2,168 [1,865-2,672], p<0.001). Following multivariable regression analysis, the CRTA was associated with BPD development (p=0.021) after adjusting for male sex and gestational age. CONCLUSIONS: Lower CRTAs on day one in the exomphalos infants compared to the controls predicted BPD development.

12.
J Pediatr Surg ; 59(5): 832-838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418278

RESUMO

BACKGROUND: Lung hypoplasia contributes to congenital diaphragmatic hernia (CDH) associated morbidity and mortality. Changes in lung wingless-type MMTV integration site family member (Wnt)-signalling and its downstream effector beta-catenin (CTNNB1), which acts as a transcription coactivator, exist in animal CDH models but are not well characterized in humans. We aim to identify changes to Wnt-signalling gene expression in human CDH lungs and hypothesize that pathway expression will be lower than controls. METHODS: We identified 51 CDH cases and 10 non-CDH controls with archival formalin-fixed paraffin-embedded (FFPE) autopsy lung tissue from 2012 to 2022. 11 liveborn CDH cases and an additional two anterior diaphragmatic hernias were excluded from the study, leaving 38 CDH cases. Messenger ribonucleic acid (mRNA) expression of Wnt-signalling effectors WNT2B and CTNNB1 was determined for 19 CDH cases and 9 controls. A subset of CDH cases and controls lung sections were immunostained for ß-catenin. Clinical variables were obtained from autopsy reports. RESULTS: Median gestational age was 21 weeks. 81% (n = 31) of hernias were left-sided. 47% (n = 18) were posterolateral. Liver position was up in 81% (n = 31) of cases. Defect size was Type C or D in 58% (n = 22) of cases based on autopsy photos, and indeterminable in 42% (n = 16) of cases. WNT2B and CTNNB1 mRNA expression did not differ between CDH and non-CDH lungs. CDH lungs had fewer interstitial cells expressing ß-catenin protein than non-CDH lungs (13.2% vs 42.4%; p = 0.006). CONCLUSION: There appear to be differences in the abundance and/or localization of ß-catenin proteins between CDH and non-CDH lungs. LEVEL OF EVIDENCE: Level III. TYPE OF STUDY: Case-Control Study.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Humanos , Lactente , Hérnias Diafragmáticas Congênitas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Cateninas/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Pulmão/anormalidades , RNA Mensageiro/metabolismo , Éteres Fenílicos/metabolismo
13.
World J Pediatr ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261172

RESUMO

BACKGROUND: Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored fetal lung growth for the risk of early-life respiratory infections and asthma. METHODS: Fetal lung size was serially assessed at standardized time points by transabdominal ultrasound in pregnant women participating in a pregnancy cohort. Correlations between fetal lung growth and respiratory infections in infancy or early-onset asthma at five years were examined. Machine-learning models relying on extreme gradient boosting regressor or classifier algorithms were developed to predict respiratory infection or asthma risk based on fetal lung growth. For model development and validation, study participants were randomly divided into a training and a testing group, respectively, by the employed algorithm. RESULTS: Enhanced fetal lung growth throughout pregnancy predicted a lower early-life respiratory infection risk. Male sex was associated with a higher risk for respiratory infections in infancy. Fetal lung growth could also predict the risk of asthma at five years of age. We designed three machine-learning models to predict the risk and number of infections in infancy as well as the risk of early-onset asthma. The models' R2 values were 0.92, 0.90 and 0.93, respectively, underscoring a high accuracy and agreement between the actual and predicted values. Influential variables included known risk factors and novel predictors, such as ultrasound-monitored fetal lung growth. CONCLUSION: Sonographic monitoring of fetal lung growth allows to predict the risk for early-life respiratory infections and asthma.

14.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203821

RESUMO

In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.


Assuntos
Síndrome do Desconforto Respiratório do Recém-Nascido , Síndrome do Desconforto Respiratório , Recém-Nascido , Humanos , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Genômica , Organogênese , RNA , Pulmão
15.
Pediatr Surg Int ; 40(1): 43, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291157

RESUMO

PURPOSE: CITED2 both modulates lung, heart and diaphragm development. The role of CITED2 in the pathogenesis of congenital diaphragmatic hernia (CDH) is unknown. We aimed to study CITED2 during abnormal lung development in the nitrofen model. METHODS: Timed-pregnant rats were given nitrofen on embryonic day (E) 9 to induce CDH. Fetal lungs were harvested on E15, 18 and 21. We performed RT-qPCR, RNAscope™ in situ hybridization and immunofluorescence staining for CITED2. RESULTS: We observed no difference in RT-qPCR (control: 1.09 ± 0.22 and nitrofen: 0.95 ± 0.18, p = 0.64) and in situ hybridization (1.03 ± 0.03; 1.04 ± 0.03, p = 0.97) for CITED2 expression in E15 nitrofen and control pups. At E18, CITED2 expression was reduced in in situ hybridization of nitrofen lungs (1.47 ± 0.05; 1.14 ± 0.07, p = 0.0006), but not altered in RT-qPCR (1.04 ± 0.16; 0.81 ± 0.13, p = 0.33). In E21 nitrofen lungs, CITED2 RNA expression was increased in RT-qPCR (1.04 ± 0.11; 1.52 ± 0.17, p = 0.03) and in situ hybridization (1.08 ± 0.07, 1.29 ± 0.04, p = 0.02). CITED2 protein abundance was higher in immunofluorescence staining of E21 nitrofen lungs (2.96 × 109 ± 0.13 × 109; 4.82 × 109 ± 0.25 × 109, p < 0.0001). CONCLUSION: Our data suggest that dysregulation of CITED2 contributes to abnormal lung development of CDH, as demonstrated by the distinct spatial-temporal distribution in nitrofen-induced lungs.


Assuntos
Hérnias Diafragmáticas Congênitas , Pneumopatias , Anormalidades do Sistema Respiratório , Animais , Feminino , Gravidez , Ratos , 2,4-Dinitrofenol , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Hérnias Diafragmáticas Congênitas/induzido quimicamente , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/metabolismo , Pulmão/anormalidades , Pneumopatias/metabolismo , Éteres Fenílicos/toxicidade , Ratos Sprague-Dawley
16.
Curr Biol ; 34(4): 683-696.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38228149

RESUMO

Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Pulmão , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação , Fatores de Crescimento de Fibroblastos/metabolismo , Epitélio/metabolismo , Morfogênese/fisiologia , Mesoderma
17.
Pediatr Cardiol ; 45(3): 500-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273050

RESUMO

Few studies have investigated how the Fontan circulation affects lung function, and no studies have investigated the development of lung function over longer time in these patients. We aimed to describe the development of lung function in Fontan patients over a 10-year period. Pulmonary function tests (PFT), including spirometry and diffusion capacity for Carbon Monoxide (DLCO) and Nitric Oxide (DLNO), were conducted in a Danish Fontan cohort in 2011 (PFT-I). In 2021, re-investigations were performed (PFT-II). We investigated changes in percent predicted (%pred) lung function from PFT-I to PFT-II. Patients were categorized into a pediatric group (age under 18 at PFT-I) and an adult group (age 18 or older at PFT-I). Out of the 81 patients completing PFT-I, 48 completed PFT-II. In the pediatric group (32 patients), there were significant declines in %pred forced expiratory volume in 1s (99.7 (92.4, 104.4)-89.3 (84.9, 97.2), p < 0,001), forced vital capacity (98.3 (87.8, 106.1)-96.7 (86.7, 100.6), p = 0.008), and alveolar volume (95.5 (89.5, 101.6)-89.5 (79.7, 93.2), p < 0.001). The corresponding measurements remained stable in the adult group. However, the median %pred DLNO significantly declined in the adult group (58.4 (53.3, 63.5)-53.7 (44.1, 57.3), p = 0.005). Over a 10-year period, several lung function parameters declined significantly in the younger Fontan patients, suggesting possible impairments in lung development during growth. The decline in %pred DLNO in the adult patient group indicates deterioration of the membrane component of diffusion capacity, implying that the Fontan circulation might negatively affect the alveolar membrane over time.


Assuntos
Técnica de Fontan , Pulmão , Adulto , Humanos , Criança , Adolescente , Técnica de Fontan/efeitos adversos , Testes de Função Respiratória , Volume Expiratório Forçado , Espirometria
18.
Am J Respir Cell Mol Biol ; 70(4): 283-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207120

RESUMO

Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is characterized by impaired lung development with sustained functional abnormalities due to alterations of airways and the distal lung. Although clinical studies have shown striking associations between antenatal stress and BPD, little is known about the underlying pathogenetic mechanisms. Whether dysanapsis, the concept of discordant growth of the airways and parenchyma, contributes to late respiratory disease as a result of antenatal stress is unknown. We hypothesized that antenatal endotoxin (ETX) impairs juvenile lung function as a result of altered central airway and distal lung structure, suggesting the presence of dysanapsis in this preclinical BPD model. Fetal rats were exposed to intraamniotic ETX (10 µg) or saline solution (control) 2 days before term. We performed extensive structural and functional evaluation of the proximal airways and distal lung in 2-week-old rats. Distal lung structure was quantified by stereology. Conducting airway diameters were measured using micro-computed tomography. Lung function was assessed during invasive ventilation to quantify baseline mechanics, response to methacholine challenge, and spirometry. ETX-exposed pups exhibited distal lung simplification, decreased alveolar surface area, and decreased parenchyma-airway attachments. ETX-exposed pups exhibited decreased tracheal and second- and third-generation airway diameters. ETX increased respiratory system resistance and decreased lung compliance at baseline. Only Newtonian resistance, specific to large airways, exhibited increased methacholine reactivity in ETX-exposed pups compared with controls. ETX-exposed pups had a decreased ratio of FEV in 0.1 second to FVC and a normal FEV in 0.1 second, paralleling the clinical definition of dysanapsis. Antenatal ETX causes abnormalities of the central airways and distal lung growth, suggesting that dysanapsis contributes to abnormal lung function in juvenile rats.


Assuntos
Displasia Broncopulmonar , Ratos , Animais , Feminino , Gravidez , Displasia Broncopulmonar/patologia , Endotoxinas , Cloreto de Metacolina/farmacologia , Microtomografia por Raio-X , Ratos Sprague-Dawley , Animais Recém-Nascidos , Pulmão/patologia
19.
Development ; 151(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179792

RESUMO

Regenerative medicine is a tool to compensate for the shortage of lungs for transplantation, but it remains difficult to construct a lung in vitro due to the complex three-dimensional structures and multiple cell types required. A blastocyst complementation method using interspecies chimeric animals has been attracting attention as a way to create complex organs in animals, although successful lung formation using interspecies chimeric animals has not yet been achieved. Here, we applied a reverse-blastocyst complementation method to clarify the conditions required to form lungs in an Fgfr2b-deficient mouse model. We then successfully formed a rat-derived lung in the mouse model by applying a tetraploid-based organ-complementation method. Importantly, rat lung epithelial cells retained their developmental timing even in the mouse body. These findings provide useful insights to overcome the barrier of species-specific developmental timing to generate functional lungs in interspecies chimeras.


Assuntos
Células-Tronco Pluripotentes , Ratos , Camundongos , Animais , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Blastocisto , Pulmão , Células Epiteliais , Modelos Animais de Doenças
20.
Dev Biol ; 506: 7-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995917

RESUMO

The evolutionary forces that allowed species adaptation to different terrestrial environments and led to great diversity in body shape and size required acquisition of innovative strategies of pattern formation during organogenesis. An extreme example is the formation of highly elongated viscera in snakes. What developmental patterning strategies allowed to overcome the space constraints of the snake's body to meet physiological demands? Here we show that the corn snake uses a Sox2-Sox9 developmental tool kit common to other species to generate and shape the lung in two phases. Initially Sox9 was found at low levels at the tip of the primary lung bud during outgrowth and elongation of the bronchial bud, without driving branching programs characteristic of mammalian lungs. Later, Sox9 induction is recapitulated in the formation of an extensive network of radial septae emerging along the elongated bronchial bud that generates the respiratory region. We propose that altogether these represent key patterning events for formation of both the respiratory faveolar and non-respiratory posterior compartments of the snake's lung.


Assuntos
Colubridae , Pulmão , Fatores de Transcrição SOX9 , Animais , Embrião não Mamífero , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Organogênese , Fatores de Transcrição SOX9/metabolismo , Colubridae/crescimento & desenvolvimento , Colubridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...